

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester II

Course Code: 102310201

Course Title: Artficial Neural Networks and Deep Learning

Type of Course: Core Course III

Course Objectives: The course is aimed to learn concepts of artificial neural networks and use them for various learning and prediction applications. The course is also aimed to learn various deep learning techniques and use them for real-time applications like object recognition, text processing, etc.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passin				ssing)
Logtung	Tutorial Practical		Credits	edits Internal		External		Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30 / 15	20 / 10	70 / 35	30 / 15	150 / 75

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours		
1	Introduction To Artificial Neural Networks	12		
	Basic concepts of neural networks, Neural network architectures, activation			
	functions, Basis learning rules, Learning single layer neural network, Multilayer			
	neural network and Backpropagation, hyperparameters, Use of neural network for			
	classification, regression, and clustering			
2	Introduction To Deep Learning	06		
	Introduction, Machine learning vs. deep learning, applications of deep learning,			
	feature engineering, Deep learning frameworks, vanishing gradients			
3	Convolutional Neural Networks			
	Basic concepts of CNN: convolution, activation function, pooling, dropout,			
	regularization, fully-connected, Architecture of CNN, Pre-trained CNN models,			
	Transfer Learning, Applications of CNN, Variants of CNN			
4	Recurrent Networks	07		
	Sequential models, Recurrent Neural Networks (RNN), RNN models: Long-Short			
	Term Memory, Gated Recurrent Unit			
5				
	Deep Autoencoders, Deep Generative Models, Capsule networks, Ensemble learning			
6	Case-study Applications: Object recognition, Character recognition, Image			
	Captioning, Language Modeling, etc.			
7	Click or tap here to enter text.	Click		
8	Click or tap here to enter text.	Click		

(Established under Gujarat Private Universities (Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

9	Click or tap here to enter text.	Click
10	Click or tap here to enter text.	Click
11	Click or tap here to enter text.	Click
12	Click or tap here to enter text.	Click
13	Click or tap here to enter text.	Click
14	Click or tap here to enter text.	Click
15	Click or tap here to enter text.	Click

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					S	R: Remembering; U: Understanding; A: Application,
R	U	Α	N	E	С	N: Analyze; E: Evaluate; C: Create
10%	40%	25%	10%	10%	05%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Jacek M. Zurada, Introduction to Artificial Neural Systems, PWS Publishing Company, 1995.
2	Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
	1996.
3	Patterson and Gibson, Deep Learning, O'reilly
4	Ian Goodfello, YoshuaBengio, and Aaron Courville, Deep learning, MIT Press, 2016.
5	Li Deng, Dong Yu, Deep learning Methods and applications, foundations and trends in signal
	processing.
6	AurélienGéron, Hands-On Machine Learning with Scikit-Learn and TensorFlow.
7	Antonio Gulli, Sujit Pal, Deep learning with keras.
8	Francois Chollet, Deep Learning with Python
9	Click or tap here to enter text.
10	Click or tap here to enter text.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Study and identify the deep learning algorithms which are appropriate	20
	for various types of learning tasks in various domains.	
CO-2	Use deep learning frameworks and solve real world problems	30
CO-3	Study and apply neural networks for classification and regression tasks	20
CO-4	Optimize parameters for better outputs	10
CO-5	Click or tap here to enter text.	Click
CO-6	Click or tap here to enter text.	Click
CO-7	Click or tap here to enter text.	Click
CO-8	Click or tap here to enter text.	Click
CO-9	Click or tap here to enter text.	Click
CO-10	Click or tap here to enter text.	Click

List of Practicals / Tutorials:

Click or tap here to enter text.

1	Implement single layer neural network
2	Perform classification using backpropagation
3	Study of Deep learning tool (Tensorflow, Pytorch, etc.)
4	Study of Keras Library for deep learning implementation
5	Perform object recognition using CNN
6	Understand and demonstrate working with Pre-trained networks
7	Study and apply transfer learning
8	Study of dimensionality reduction through Autoencoder
9	Study of Long-Short Term Memory
10	Study of Gated Recurrent Unit
11	Study of Generative Adversarial Network
12	Click or tap here to enter text.
13	Click or tap here to enter text.
14	Click or tap here to enter text.
15	Click or tap here to enter text.

Sup	Supplementary learning Material:					
1	NPTEL Deep Learning: https://nptel.ac.in/courses/106/106/106106184/					
2	deeplearning.net, www.pyimagesearch.com, neuralnetworksanddeeplearning.com,					
	deeplearning.ai					
3	Click or tap here to enter text.					
4	Click or tap here to enter text.					
5	Click or tap here to enter text.					

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		